Quick Start ====================== Import pipelines for a specific topic, for example to import the :code:`One2One` and :code:`CherryPicked` pipelines for galaxies characterization: .. code-block:: python >>> from astromlp.galaxies import One2One, CherryPicked Next, create an instance of the `One2One` pipeline, you may need to provide the location of the `astromlp-models/model_store` directory where the actual models live, for example: .. code-block:: python >>> pipeline = One2One(model_store='./astromlp-models/model_store') The galaxies pipelines are based on SDSS data, so the input to the pipeline if an SDSS object identifier (`objid`), for example to process the object `1237648720693755918 `_ using the selected pipeline run: .. code-block:: python >>> result = pipeline.process(1237648720693755918) The `result` object is an instance of :code:`PipelineResult`, the outputs of the pipeline processing: .. code-block:: python >>> result PipelineResult(redshift=0.0869317390024662, smass=23.44926865895589, subclass='STARFORMING', gz2c='ScR') The :code:`PipelineResult` object implements other methods that provide extra data, namely: - :code:`objid`: returns the SDSS object identifier; - :code:`obj`: returns some information about the object from SDSS data; - :code:`models`: returns the ensemble of models used; - :code:`map`: returns the list of results of applying each individual model for each output. You can easily create new ensembles of models using the :code:`MapReducPipeline` and passing the list of outputs and corresponding models. For example, to create a pipeline that computes the `redshift` using the `i2r` and `f2r` models: .. code-block:: python >>> from astromlp.galaxies import MapReducePipeline >>> pipeline = MapReducePipeline({ 'redshift': ['i2r', 'f2r'] })