astromlp.sdss package
Submodules
astromlp.sdss.datagen module
- class astromlp.sdss.datagen.DataGen(ids, x=[], y=[], classes={'gz2c': ['A', 'Ec', 'Ei', 'Er', 'SBa', 'SBaR', 'SBb', 'SBbR', 'SBc', 'SBcR', 'SBd', 'SBdR', 'Sa', 'SaR', 'Sb', 'SbR', 'Sc', 'ScR', 'Sd', 'SdR', 'Seb', 'Sen', 'Ser'], 'subclass': ['AGN', 'BROADLINE', 'STARBURST', 'STARFORMING']}, batch_size=64, helper=None)
Bases:
keras.utils.data_utils.Sequence
A data generator to use the SDSS Galaxy Subset dataset with Keras.
- ids
list of SDSS object identifiers
- Type
str
- x
list of input variables (eg. img, spectra)
- Type
[str]
- y
list of output variables (eg. redshift, subclass)
- Type
[str]
- batch_size
batch size, defaults to 64
- Type
int
- on_epoch_end()
Method called at the end of every epoch.
astromlp.sdss.helper module
- class astromlp.sdss.helper.Helper(ds: str = '../sdss-gs')
Bases:
object
A helper class providing set of helper functions to deal with the SDSS Galaxy Subset dataset, henceforth refereed to as sdss-ds.
- ds
location of the sdss-ds dataset, detauls to ‘../sdss-gs’
- Type
str
- get_obj(id, wise=False)
Retrieve information for a SDSS object.
- Parameters
id (int) – a SDSS object identifier
- Returns
a Dict containing proprieties available for the object from the sdss-ds
- ids_list(has_img=False, has_fits=False, has_spectra=False, has_ssel=False, has_bands=False, has_wise=False, has_gz2c=False)
Build a list of SDSS objects identifiers from the sdss-ds dataset.
- Parameters
has_img (bool) – include identifier only if RGB image file is available, defaults to False
has_fits (bool) – include identifier only if FITS data file is available, defaults to False
has_spectra (bool) – include identifier only if spectra data file is available, defaults to False
has_ssel (bool) – include identifier only if spectra selected bands data file is available, defaults to False
has_bands (bool) – include identifier only if bands data is available, defaults to False
has_wise (bool) – include identifier only if WISE data is available, defaults to False
- Returns
list of SDSS objects identifiers
- load_bands(_ids)
Load list of bands data into a numpy array given list of SDSS object identifiers.
- Parameters
ids ([int]) – list of SDSS object identifiers
- Returns
a numpy array
- load_fits(_ids)
Load list of FITS data into a numpy array given list of SDSS object identifiers.
- Parameters
ids ([int]) – list of SDSS object identifiers
- Returns
a numpy array
- load_img(filename)
Load RGB image into a numpy array from file.
- Parameters
filename (str) – RGB image filename
- Returns
a numpy array
- load_imgs(_ids)
Load list of RGB images into a numpy array given list of SDSS object identifiers.
- Parameters
ids ([int]) – list of SDSS object identifiers
- Returns
a numpy array
- load_spectra(filename)
Load spectra data into a numpy array from file.
- Parameters
filename (str) – spectra data filename
- Returns
a numpy array
- load_spectras(ids)
Load list of spectra data into a numpy array given list of SDSS object identifiers.
- Parameters
ids ([int]) – list of SDSS object identifiers
- Returns
a numpy array
- load_ssel(filename)
Load spectra selected bands data into a numpy array from file.
- Parameters
filename (str) – spectra data filename
- Returns
a numpy array
- load_ssels(ids)
Load list of spectra selected bands data into a numpy array given list of SDSS object identifiers.
- Parameters
ids ([int]) – list of SDSS object identifiers
- Returns
a numpy array
- load_wises(_ids)
Load list of WISE data into a numpy array given list of SDSS object identifiers.
- Parameters
ids ([int]) – list of SDSS object identifiers
- Returns
a numpy array
- random_id()
Return a random SDSS object identifier from the sdss-ds dataset.
- Returns
a random SDSS object identifier
- save_fits(obj, filename=None, base_dir='./')
Retrieve and save FITS data file for a given SDSS object.
- Parameters
obj – SDSS object
filename (str) – optional filename
- Returns
a numpy array
- save_img(obj, filename=None)
Retrieve and save RGB image for a given SDSS object.
- Parameters
obj – SDSS object
filename (str) – optional filename
- Returns
a numpy array
- save_spectra(obj, filename=None)
Retrieve and save spectra data file for a given SDSS object.
- Parameters
obj – SDSS object
filename (str) – optional filename
- Returns
a numpy array
- save_ssel(obj, filename=None, spectra_filename=None)
Retrieve and save spectra selected bands data file for a given SDSS object.
- Parameters
obj – SDSS object
filename (str) – optional filename
- Returns
a numpy array
- y_list(ids, target)
Build a list of target data to use in the data generator for a continuous variable.
- Parameters
ids ([int]) – list of SDSS object identifiers
target (str) – target variable
- Returns
a numpy array
- y_list_class(ids, target, classes)
Build a list of target data to use in the data generator for a class variable.
- Parameters
ids ([int]) – list of SDSS object identifiers
target (str) – target variable
classes – classes object
- Returns
a numpy array, class set
astromlp.sdss.predictor module
- class astromlp.sdss.predictor.Predictor(model, model_store='./astromlp-models/model_store', x=None, y=None, helper=None, tmp_dir='/tmp/mysdss')
Bases:
object
A predictor class for predicting data using astromlp-models.
- model
the astromlp-model identifier (eg, i2r, f2s)
- Type
str
- model_store
location of the model store, defaults to ‘./astromlp-models/model_store’
- Type
str
- predict(objid, extra=True, return_input=True)
Perform a prediction on a model for a SDSS object identifier.
- Parameters
objid (id) – SDSS object identifier
- Returns
an object where the key output contains the resulting prediction
astromlp.sdss.skyserver module
- class astromlp.sdss.skyserver.SkyServer(base_url='http://skyserver.sdss.org/dr16/SkyServerWS')
Bases:
object
Helper class to perform operations using the SkyServer Web Service.
- base_url
SkyServer API base URL
- Type
str
- get_obj(objid, wise=True)
Retrieve information for a SDSS object.
- Parameters
objid (int) – a SDSS object identifier
wise (bool) – include WISE data, defaults to False
- Returns
a Dict containing proprieties available for the object from the sdss-ds
- save_jpeg(objid, filename, ra=None, dec=None, scale=0.2, width=150, height=150)
Save RGB image in JPEG format for a given SDSS object identifier.
- Parameters
objid (int) – a SDSS object identifier
filename (str) – RG image filename
scale (float) – scale to use, defaults to 0.2
width (int) – image width, defaults to 150
height (int) – image height, defaults to 150
wise (bool) – include WISE data, defaults to False
- Returns
RGB image filename
astromlp.sdss.utils module
- astromlp.sdss.utils.build_datagens(ids, x=None, y=None, batch_size=32, helper=None)
Build a data generator for a training, validation and test sets.
- Parameters
ids ([int]) – a list of SDSS object identifiers
x ([str]) – list of input variables (eg. img, spectra)
y ([str]) – list of output variables (eg. redshift, subclass)
batch_size (int) – batch size, defaults to 32
- Returns
a tuple of data generators
- astromlp.sdss.utils.history_fit_plots(name, history, base_dir='./model_plots', smoothing=False)
Create plots given a tensorflow history object.
- Parameters
name – model name
history – tensorflow history object or history dictionary
- astromlp.sdss.utils.history_load(name, base_dir='./model_history')
Load saved model history.
- Parameters
name (str) – model name
base_dir (str) – files base directory (optional, defaults to ‘./model_history’)
- Returns
history dict from file
- astromlp.sdss.utils.history_save(name, history, base_dir='./model_history')
Save model history given a tensorflow history object.
- Parameters
name (str) – model name
history (dict) – tensorflow history object
base_dir (str) – files base directory (optional, defaults to ‘./model_history’)
- astromlp.sdss.utils.my_callbacks(name=None, path=None, check_point=False, monitor='val_loss', mode='min', lr_scheduler=False, schedule='time_based_decay', tensor_board=True)
Return a list of Keras callbacks.
- Parameters
name (str) – model name
path (str) – model path, for saving the model
check_point (bool) – include the ModelCheckpoint Keras default callback
lr_scheduler (bool) – include the LearningRateScheduler Keras default callback
schedule (str) – the learning rate schedule, ‘time_based_decay’ or ‘step_decay’
tensor_board (bool) – include the TensorBoard Keras default callback
- astromlp.sdss.utils.train_test_split(ids)
Split list of ids into a training and test sets.
- Parameters
ids ([int]) – a list of SDSS object identifiers
- Returns
a tuple of lists
- astromlp.sdss.utils.train_val_test_split(ids)
Split list of ids into a training, validation and test sets.
- Parameters
ids ([int]) – a list of SDSS object identifiers
- Returns
a tuple of lists